

JPS Reliability

A Reliable Plant is a Profitable Plant

Bonus - Case Study #6

Dynamic Vibration Absorber

Distributing energy in line with the First Law of Thermodynamics

PROfessional services for PROactive maintenance

CASE STUDIES

The integration of the MIRCE Science Theory and JPS Reliability Reality is illustrated through the following 6 case studies:

- I. Electrical Motor Terminal Connection Defect
- 2. Standby Fan Motor Defect
- 3. Variable Frequency Drive Deterioration
- 4. Vibrating Screen Gearbox Bearing Defect
- 5. 4 Point Contact Bearing 23RPM Defect
- 6. Dynamic Vibration Absorber
- Each slide we will discuss how the defect was detected and what actions were/were not put in place to protect the functionability of the system

HISTORY & BACKGROUND

- High lift pumps at the pumping station facility have historically suffered from low reliability and required many expensive overhauls with new bearing sets (Babbitt/White Metal)
- Various attempts to resolve the root cause have not been successful

BEARING LOCATION

Tilting pad bearing location

BEARING INSPECTION: OIL

 Microscopic inspection of the oil, debris is present

The pads vary from no contact to full contact and cracking of the tilting pad, indicating eccentric (non-orbital) motion

 Microscopic image of a pad with no wiping, and an image of a pad with wiping damage

Microscopic image of the cracked pad surface displaying fatigue cracking

- Microscopic cross sectional image of the cracked pad
- Bond line intact

 Failure is at the weakest point, the pivot point

VIBRATION ANALYSIS

VELOCITY SPECTRA

- Forcing function | Order
- Directional vibration
- Vibration changes with speed

Dial Number	RPM	lOrder	Overall
0	662.51	30.25	35
I.	679.34	26.94	28.96
2	694.75	20.98	21.22
3	707.68	15.87	18.00
4	721.29	12.77	15.02
5	740.79	11.63	13.69

ADDING MASS TO THE SYSTEM

- The addition of weight moved the resonant frequency down to speed range 2
- The weight (additional mass 10Kg) dampened the vibration motion and lowered the resonant frequencies
- Conformation of a resonant condition

OVERALL VIBRATION VS SPEED: MASS ADDED

- The peak vibration is now occurring at speed set point 2
- As the speed increases the vibration reduces
- This type of vibration and speed relationship indicates a resonant issue

VIBRATION VS SPEED: STRIP CHART

- Speed 3 high fluctuation, indicating a critical speed / resonance / beat frequency
- Speed 5 lower levels and more constant

RESONANCE TEST 'BUMP TEST'

 Bump test indicating a structural resonance

WORKSHOP: AMPLITUDE AND PHASE

- One order tracked
- Set up on a test bed no load
- Accelerometer location on the top of the motor (NDE)

ON-SITE: AMPLITUDE AND PHASE

- One Order tracked
- Set up on foundation under normal operational load
- Note how the structure changes the motion

WHY?

Motor bearing failures, concentrated at the motor drive end

THE 'FIVE WHYS'

The motor Babbitt (white metal) tilting pad bearings fail

There is metal to metal contact

Overload fatigue - Increased dynamic load on the bearing

High directional vibration causing the coupling and prop shaft to overload the bearing

On site structural resonance amplifying the motion of the motor. This creates highly stressed/torsional load at the drive end of the motor

CONCLUSION

- There are no issues with the motor rebuild, the balance and dynamics of the motor when operated unloaded in the test bay, >4mm/s RMS
- A structural resonance on site is causing an amplification of vibration levels
- This resonance increases the dynamic loads on the drive end bearing
- This then causes Babbitt fatigue, cracking, and Babbitt wiping due to rotor to stator contact

SUPPORT STEEL WORK: MODIFICATION

- A decision to stiffen the structure was made
- All good in theory but where does the energy go?

SUPPORT STEEL WORK: VIBRATION RESULTS

DYNAMIC VIBRATION ABSORBER

WHAT IS A DVA?

- It is a tuned spring mass system which reduces or eliminates the vibration of a harmonically excited system
- All rotating machines can induce vibration due to structural resonances. A dynamic absorber can be tuned to excite in such a way exactly counteracts the force from the structural resonance
- Properly implemented, a dynamic absorber will neutralise the undesirable vibration, which would otherwise reduce service life or cause mechanical damage
- Dynamic absorbers differ from tuned mass dampers in that dynamic absorbers do not require any damping to function satisfactorily

DVA DESIGN: DUNKERLY METHOD

- Bar Cross Section
- Length
- Free Distance to weight
- Bar diameter
- Bar width
- Bar height
- Density
- Young's Modulus
- Target resonant frequency

. .

DVA SITE INSTALLATION

DVA SITE INSTALLATION:VIDEO

Normal Speed

DVA SITE INSTALLATION:VIDEO

 Slow Speed showing the point of flex

VIBRATION RESULTS: OVERALL LEVELS

VIBRATION RESULTS: OVERALL WITH SPEED

TABLE OF DIRECTIONAL RATIO VIBRATION DATA

This table is the difference in the radial vibration velocity in mm/s RMS (Lower the number the less stress to the bearings)

Location		Normal Operational	Structural Modifications	Vibration Dynamic Absorber
NDE (T	OP)	2.65	16.83	0.41
DE (BOTTO	OM)	0.30	3.63	0.30

12 MONTH INSPECTION

Follow Up

12 MONTH FOLLOW UP ON TRIAL

The fatigue rate for the main arms of the Dynamic Vibration Absorbers are 11/12 months

INSTALLATION OF REPLACEMENT DVA ARMS

 One order vibration reduced from 13.7 to 4.5 mm/s RMS after the DVA Arms were replaced

DVA: SUMMARY

- The Dynamic Vibration Absorbers have been successful in absorbing the vibration energy from this asset ensuring low vibration levels and correct dynamic motion
- This will enable the asset to run longer in operation before maintenance/repair increasing the functionability of the pump and reducing the overall operational life costs of the asset
- The average costs to change the motor bearings is £15,000, if the motor failed the average cost for a full overhaul and rotor rewind is £55,000. This excludes the costs of loss of production and associated financial and reputation costs.

HOW WE CAN HELP

When a business requires support with or development of Health Based Maintenance we work in partnership in;

Upskill your team with Practical Mentoring in

- Ultrasound Airborne and Structural Borne
- Infrared Thermography-Low Voltage, Mechanical and Process
- Vibration Analysis
- General Maintenance Practices
- Practical Reliability Engineering

Contracted Reliability Services

 Contemporary Condition Monitoring consultancy to assist clients with the mangement of their Health Based Maintenance program

TECHNOLOGIES AND SERVICES

Vibration Analysis	Lubrication	Thermography	Ultrasound
Unbalance	Gear faults/wear	Bearings	Inadequate lubrication
Looseness	Wrong oil/mixed	Overheating	Steam traps/valves
Resonance	Oil degradation	Steam traps/valves	Bearings
Pump issues	Contamination	Flammable gas leaks	Flammable gas / air leaks
Gear faults/wear	Fuel dilution	HV issues	HV issues
Inadequate lubrication	Leaking seals	Electrical wiring faults	Corona discharge arcing
Bearings	Bearings	Heat exchanger blockage	Heat exchanger
Steam traps/valves	Overheating	Refractory applications	tubes/plate

CONTACT JPS RELIABILITY

info@jpsreliability.com

https://jpsreliability.com

07387 986 454

JPS Reliability LTD is a Company registered in England under company number 12547245. Bristol, UK.